Development of shear and cross section deformable beam finite elements applied to large deformation and dynamics problems
نویسنده
چکیده
In this paper, beam finite elements based on the absolute nodal coordinate formulation (ANCF) are presented, in which the orientation of the cross section is parameterized by means of slope vectors only. Resulting, no singularities due to an angle parameter occur and the mass matrix is advantageously constant. A continuum mechanics as well as a structural mechanics based formulation for the elastic forces are investigated. Static as well as dynamic examples show accuracy and high order convergence of the presented beam finite elements.
منابع مشابه
Simple Two Variable Refined Theory for Shear Deformable Isotropic Rectangular Beams
In this paper, a displacement-based, variationally consistent, two variable refined theory for shear deformable beams is presented. The beam is assumed to be of linearly elastic, homogeneous, isotropic material and has a uniform rectangular cross-section. In this theory, the beam axial displacement and beam transverse displacement consist of bending components and shearing components. The assum...
متن کاملResponse Determination of a Beam with Moderately Large Deflection Under Transverse Dynamic Load Using First Order Shear Deformation Theory
In the presented paper, the governing equations of a vibratory beam with moderately large deflection are derived using the first order shear deformation theory. The beam is homogenous, isotropic and it is subjected to the dynamic transverse and axial loads. The kinematic of the problem is according to the Von-Karman strain-displacement relations and the Hook's law is used as the constitutive eq...
متن کاملhp-Spectral Finite Element Analysis of Shear Deformable Beams and Plates
There are different finite element models in place for predicting the bending behavior of shear deformable beams and plates. Mostly, the literature abounds with traditional equi-spaced Langrange based low order finite element approximations using displacement formulations. However, the finite element models of Timoshenko beams and Mindlin plates with linear interpolation of all generalized disp...
متن کاملDynamics of nonlinear rectangular plates subjected to an orbiting mass based on shear deformation plate theory
In this paper, transverse and longitudinal vibration of nonlinear plate under exciting of orbiting mass is considered based on first-order shear deformation theory. The nonlinear governing equation of motion are discretized by the finite element method in combination with Newmark’s time integration scheme under von Karman strain-displacement assumptions. For validation of method and formulation...
متن کاملDeflection of a hyperbolic shear deformable microbeam under a concentrated load
Deflection analysis of a simply supported microbeam subjected to a concentrated load at the middle is investigated on the basis of a shear deformable beam theory and non-classical theory. Effects of shear deformation and small size are taken into consideration by hyperbolic shear deformable beam theory and modified strain gradient theory, respectively. The governing differential equations and c...
متن کامل